Lagrange and Polynomial Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

Periodic Solutions of Lagrange Equations

Nontrivial periodic solutions of Lagrange Equations are investigated. Sublinear and superlinear nonlinearity are included. Convexity assumptions are significiently relaxed. The method used is the duality developed by the authors.

متن کامل

Lagrange Multipliers and Stationary Stokes Equations

are called stationary Stokes equations, where u : Ω→ R denotes the velocity of the uid, p : Ω→ R denotes the pressure and f : Ω → R is the density of forces acting on the uid (e.g. gravitational force). The Stokes equations govern a ow of a steady, viscous, incompresible uid. We note that (1) is called the momentum equation and (2) is called the incompressibility equation. We supplement the sys...

متن کامل

Lagrange Multipliers and Stationary Stokes Equations

are called stationary Stokes equations, where u : Ω→ R denotes the velocity of the uid, p : Ω→ R denotes the pressure and f : Ω → R is the density of forces acting on the uid (e.g. gravitational force). The Stokes equations govern a ow of a steady, viscous, incompresible uid. We note that (1) is called the momentum equation and (2) is called the incompressibility equation. We supplement the sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal for History of Mathematics

سال: 2014

ISSN: 1226-931X

DOI: 10.14477/jhm.2014.27.3.165